
6 Event-based Independence and Conditional

Probability

Example 6.1. Roll a dice. . .

Example

3

 Roll a fair dice

 Sneak peek:
Figure 10: Conditional Probability Example: Sneak Peek

Example 6.2 (Slides). Diagnostic Tests.

6.1 Event-based Conditional Probability

Definition 6.3. Conditional Probability : The conditional prob-
ability P (A|B) of event A, given that event B 6= ∅ occurred, is
given by

P (A|B) =
P (A ∩B)

P (B)
. (6)

� Some ways to say23 or express the conditional probability,
P (A|B), are:

◦ the “(conditional) probability of A, given B”

◦ the “(conditional) probability of A, knowing B”

◦ the “(conditional) probability of A happening, knowing
B has already occurred”

◦ the “(conditional) probability ofA, given thatB occurred”

◦ the “(conditional) probability of an event A under the
knowledge that the outcome will be in event B”

23Note also that although the symbol P (A|B) itself is practical, it phrasing in words can be
so unwieldy that in practice, less formal descriptions are used. For example, we refer to “the
probability that a tested-positive person has the disease” instead of saying “the conditional
probability that a randomly chosen person has the disease given that the test for this person
returns positive result.”
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� Defined only when P (B) > 0.

◦ If P (B) = 0, then it is illogical to speak of P (A|B); that
is P (A|B) is not defined.

6.4. Interpretation : It is sometimes useful to interpret P (A)
as our knowledge of the occurrence of event A before the exper-
iment takes place. Conditional probability24 P (A|B) is the up-
dated probability of the event A given that we now know that
B occurred (but we still do not know which particular outcome in
the set B did occur).

Definition 6.5. Sometimes, we refer to P (A) as

� a priori probability, or

� the prior probability of A, or

� the unconditional probability of A.

Example 6.6. Back to Example 6.1. Roll a dice. Let X be the
outcome.

Example

3

 Roll a fair dice

 Sneak peek:
Figure 11: Sneak Peek: A Revisit

24In general, P (A) and P (A|B) are not the same. However, in the next section (Section
6.2), we will consider the situation in which they are the same.
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Example 6.7. In diagnostic tests Example 6.2, we learn whether
we have the disease from test result. Originally, before taking the
test, the probability of having the disease is 0.01%. Being tested
positive from the 99%-accurate test updates the probability of
having the disease to about 1%.

More specifically, let D be the event that the testee has the
disease and TP be the event that the test returns positive result.

� Before taking the test, the probability of having the disease
is P (D) = 0.01%.

� Using 99%-accurate test means

P (TP |D) = 0.99 and P (T cP |Dc) = 0.99.

� Our calculation shows that P (D|TP ) ≈ 0.01.

6.8. “Prelude” to the concept of “independence”:
If the occurrence of B does not give you more information about
A, then

P (A|B) = P (A) (7)

and we say that A and B are independent .

� Meaning: “learning that eventB has occurred does not change
the probability that event A occurs.”

We will soon define “independence” in Section 6.2. Property
(7) can be regarded as a “practical” definition for independence.
However, there are some “technical” issues25 that we need to deal
with when we actually define independence.

6.9. When Ω is finite and all outcomes have equal probabilities,

P (A|B) =
P (A ∩B)

P (B)
=
|A ∩B| / |Ω|
|B| / |Ω| =

|A ∩B|
|B| .

This formula can be regarded as the classical version of conditional
probability.

25Here, the statement assume P (B) > 0 because it considers P (A|B). The concept of
independence to be defined in Section 6.2 will not rely directly on conditional probability and
therefore it will include the case where P (B) = 0.
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Exercise 6.10. Someone has rolled a fair dice twice. You know
that one of the rolls turned up a face value of six. What is the
probability that the other roll turned up a six as well?
Ans: 1

11 (not 1
6). [21, Example 8.1, p. 244]

Example 6.11. Consider the following sequences of 1s and 0s
which summarize the data obtained from 15 testees.

D: 0 1 1 0 0 0 0 1 1 1 1 0 1 0 1

TP: 1 0 0 1 1 0 0 0 0 0 1 1 0 1 1

The “D” row indicates whether each of the testees actually has the
disease under investigation. The “TP” row indicates whether each
of the testees is tested positive for the disease.

Numbers “1” and “0” correspond to “True” and “False”, re-
spectively.

Suppose we randomly pick a testee from this pool of 15 per-
sons. Let D be the event that this selected person actually has
the disease. Let TP be the event that this selected person is tested
positive for the disease.

Find the following probabilities.

(a) P (D)

(b) P (Dc)

(c) P (TP )

(d) P (T cP )

(e) P (TP |D)

(f) P (TP |Dc)

(g) P (T cP |D)

(h) P (T cP |Dc)

67



6.12. Similar properties to the three probability axioms:

(a) Nonnegativity: P (A ) ≥ 0

(b) Unit normalization: P (Ω ) = 1.

In fact, for any event A such that B ⊂ A, we have P (A|B) =
1.

This implies
P (Ω|B) = P (B|B) = 1.

(c) Countable additivity: For every countable sequence (An)
∞
n=1

of disjoint events,

P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P (An ).

� In particular, if A1 ⊥ A2,

P (A1 ∪ A2 ) = P (A1 ) + P (A2 )

6.13. More Properties:

� P (A|Ω) = P (A)

� P (Ac|B) = 1− P (A|B)

� P (A ∩B|B) = P (A|B)

� P (A1 ∪ A2|B) = P (A1|B) + P (A2|B)− P (A1 ∩ A2|B).

� P (A ∩B) ≤ P (A|B)

68



6.14. Probability of compound events

(a) P (A ∩B) = P (A)P (B|A) = P (B)P (A|B)

(b) P (A ∩B ∩ C) = P (A ∩B)× P (C|A ∩B)

(c) P (A ∩B ∩ C) = P (A)× P (B|A)× P (C|A ∩B)

When we have many sets intersected in the conditioning part, we
often use “,” instead of “∩”.

Example 6.15. Most people reason as follows to find the proba-
bility of getting two aces when two cards are selected at random
from an ordinary deck of cards:

(a) The probability of getting an ace on the first card is 4/52.

(b) Given that one ace is gone from the deck, the probability of
getting an ace on the second card is 3/51.

(c) The desired probability is therefore

4

52
× 3

51
.

[21, p 243]

Question: What about the unconditional probability P (B)?
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Example 6.16. You know that roughly 5% of all used cars have
been flood-damaged and estimate that 80% of such cars will later
develop serious engine problems, whereas only 10% of used cars
that are not flood-damaged develop the same problems. Of course,
no used car dealer worth his salt would let you know whether your
car has been flood damaged, so you must resort to probability
calculations. What is the probability that your car will later run
into trouble?

6.17. Tree Diagram and Conditional Probability: Conditional
probabilities can be represented on a tree diagram as shown in
Figure 12.

Tree Diagram and Total Probability 

Theorem

1

=

=

=

=

𝑃 𝐴 = 𝑃 𝐴|𝐵 𝑃 𝐵 + 𝑃 𝐴|𝐵𝑐 𝑃 𝐵𝑐

Figure 12: Tree Diagram and Conditional Probabilities
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A more compact representation is shown in Figure 13.

Diagram: Compact Form

1

𝑃 𝐵

𝑃 𝐵𝑐

𝑃 𝐴|𝐵

𝑃 𝐴𝑐|𝐵𝑐
𝐴𝑐

𝐴

𝐵𝑐

𝐵 𝑃 𝐴 = 𝑃 𝐴|𝐵 𝑃 𝐵 + 𝑃 𝐴|𝐵𝑐 𝑃 𝐵𝑐

𝑃 𝐴𝑐 = 𝑃 𝐴𝑐|𝐵 𝑃 𝐵 + 𝑃 𝐴𝑐|𝐵𝑐 𝑃 𝐵𝑐

Figure 13: Compact Diagram for Conditional Probabilities

Example 6.18. A simple digital communication channel called
binary symmetric channel (BSC) is shown in Figure 6.58. This
channel can be described as a channel that introduces random bit
errors with probability p.

1

0

1

0

1

p

1-p

p

1-p

X Y

Communication Channel

Channel Input Channel Output

Figure 14: Binary Symmetric Channel (BSC)

6.19. Total Probability Theorem : If a (finite or infinitely)
countable collection of events {B1, B2, . . .} is a partition of Ω, then

P (A) =
∑
i

P (A|Bi)P (Bi). (8)

This is a formula26 for computing the probability of an event
that can occur in different ways. Observe that it follows directly
from 5.21 and Definition 6.3.

26The tree diagram is useful for helping you understand the process. However, when the
number of possible cases is large (many Bi for the partition), drawing the tree diagram may
be too time-consuming and therefore you should also learn how to apply the total probability
theorem directly without the help of the tree diagram.
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� Special case: P (A) = P (A|B)P (B) + P (A|Bc)P (Bc).
This gives exactly the same calculation as what we discussed
in Example 6.16.

Example 6.20. Continue from the “Diagnostic Tests” Example
6.2 and Example 6.7.

P (TP ) = P (TP ∩D) + P (TP ∩Dc)

= P (TP |D)P (D) + P (TP |Dc )P (Dc) .

For conciseness, we define

pd = P (D)

and
pTE = P (TP |Dc) = P (T cP |D).

Then,
P (TP ) = (1− pTE)pD + pTE(1− pD).

6.21. Bayes’ Theorem:

(a) Form 1:

P (B|A) = P (A|B)
P (B)

P (A)
.

(b) Form 2: If a (finite or infinitely) countable collection of events
{B1, B2, . . .} is a partition of Ω, then

P (Bk|A) = P (A|Bk)
P (Bk)

P (A)
=

P (A|Bk)P (Bk)∑
i P (A|Bi)P (Bi)

.

� Extremely useful for making inferences about phenomena that
cannot be observed directly.
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� Sometimes, these inferences are described as “reasoning about
causes when we observe effects”.

6.22. Summary:

(a) An easy but crucial property:

(b) Key setup: find a partition of the sample space

(c) Total probability theorem:

(d) Bayes’ theorem:

� Special case: When there are only two cases: B1 and B2,
we can think of them as B and Bc, respectively:

◦ P (A) =

◦ P (B|A) =

◦ P (B|Ac) =
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Example 6.23. Suppose Ω = {a, b, c, d, e}. Define four events

A = {a, b, c}, B = {a, b}, C = {c, d}, and D = {e}.

Let

P ({a}) = P ({b}) = 0.2, and P ({c}) = P ({d}) = 0.1.

Calculate the following probabilities:

(a) P ({e})

(b) P (B) , P (C) ,

P (D)

(c) P (A|B)

P (A|C)

P (A|D)

(d) P (A)

Check: Observe that the collection {B,C,D} partitions Ω.
Use the total probability theorem to find P (A).

(e) P (B|A)
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Example 6.24. Continue from the “Disease Testing” Examples
6.2, 6.7, and 6.20:

P (D |TP ) =
P (D ∩ TP )

P (TP )
=
P (TP |D )P (D)

P (TP )

=
(1− pTE)pD

(1− pTE)pD + pTE(1− pD)Effect of pTE

1

pTE = 1 – 0.99 = 0.01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pTE = 1 – 0.9 = 0.1

pTE = 1 – 0.5 = 0.5

pD

P(
D
|
T
P
)

Figure 15: Probability P (D |TP ) that a person will have the disease given
that the test result is positive. The conditional probability is evaluated as a
function of PD which tells how common the disease is. Thee values of test error
probability pTE are shown.

Example 6.25. Medical Diagnostic: Because a new medical pro-
cedure has been shown to be effective in the early detection of an
illness, a medical screening of the population is proposed. The
probability that the test correctly identifies someone with the ill-
ness as positive is 0.99, and the probability that the test correctly
identifies someone without the illness as negative is 0.95. The in-
cidence of the illness in the general population is 0.0001. You take
the test, and the result is positive. What is the probability that
you have the illness? [15, Ex. 2-37]
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Example 6.26. Bayesian networks are used on the Web sites of
high-technology manufacturers to allow customers to quickly di-
agnose problems with products. An oversimplified example is pre-
sented here.

A printer manufacturer obtained the following probabilities from
a database of test results. Printer failures are associated with three
types of problems: hardware, software, and other (such as connec-
tors), with probabilities 0.1, 0.6, and 0.3, respectively. The prob-
ability of a printer failure given a hardware problem is 0.9, given
a software problem is 0.2, and given any other type of problem is
0.5. If a customer enters the manufacturers Web site to diagnose
a printer failure, what is the most likely cause of the problem?

Let the events H, S, and O denote a hardware, software, or
other problem, respectively, and let F denote a printer failure.

P (H|F ) =
P (H ∩ F )

P (F )
=
P (F |H)P (H)

P (F )

P (S|F ) =
P (S ∩ F )

P (F )
=
P (F |S)P (S)

P (F )

P (O|F ) =
P (O ∩ F )

P (F )
=
P (F |O)P (O)

P (F )
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Example 6.27 (Slides). The Murder of Nicole Brown

6.28. Chain rule of conditional probability [9, p 58]:

P (A ∩B|C) = P (B|C)P (A|B ∩ C).

6.29. In practice, here is how we use the total probability theorem and Bayes’
theorem:

Usually, we work with a system, which of course has input and output.
There can be many possibilities for inputs and there can be many possibilities
for output. Normally, for deterministic system, we may have a specification that
tells what would be the output given that a specific input is used. Intuitively,
we may think of this as a table of mapping between input and output. For
system with random component(s), when a specific input is used, the output is
not unique. This mean we needs conditional probability to describe the output
(given an input). Of course, this conditional probability can be different for
different inputs.

We will assume that there are many cases that the input can happen. The
event that the ith case happens is denoted by Bi. We assume that we consider
all possible cases. Therefore, the union of these Bi will automatically be Ω. If
we also define the cases so that they do not overlap, then the Bi partitions Ω.

Similarly, there are many cases that the output can happen. The event that
the jth case happens is denoted by Aj. We assume that the Aj also partitions
Ω.

In this way, the system itself can be described by the conditional proba-
bilities of the form P (Aj|Bi). This replaces the table mentioned above as the
specification of the system. Note that even when this information is not avail-
able, we can still obtain an approximation of the conditional probability by
repeating trials of inputting Bi in to the system to find the relative frequency
of the output Aj.

Now, when the system is used in actual situation. Different input cases can
happen with different probabilities. These are described by the prior probabil-
ities P (Bi). Combining this with the conditional probabilities P (Aj|Bi) above,
we can use the total probability theorem to find the probability of occurrence for
output and, even more importantly, for someone who cannot directly observe
the input, Bayes’ theorem can be used to infer the value (or the probability) of
the input from the observed output of the system.

In particular, total probability theorem deals with the calculation of the
output probabilities P (Aj):

P (Aj) =
∑
i

P (Aj ∩Bi) =
∑
i

P (Aj |Bi )P (Bi).

Bayes’ theorem calculates the probability that Bk was the input event when the
observer can only observe the output of the system and the observed value of
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the output is Aj:

P (Bk |Aj ) =
P (Aj ∩Bk)

P (Aj)
=

P (Aj |Bk )P (Bk)∑
i

P (Aj |Bi )P (Bi)
.

Example 6.30. In the early 1990s, a leading Swedish tabloid tried to create an
uproar with the headline “Your ticket is thrown away!”. This was in reference to
the popular Swedish TV show “Bingolotto” where people bought lottery tickets
and mailed them to the show. The host then, in live broadcast, drew one ticket
from a large mailbag and announced a winner. Some observant reporter noticed
that the bag contained only a small fraction of the hundreds of thousands tickets
that were mailed. Thus the conclusion: Your ticket has most likely been thrown
away!

Let us solve this quickly. Just to have some numbers, let us say that there
are a total of N = 100, 000 tickets and that n = 1, 000 of them are chosen at
random to be in the final drawing. If the drawing was from all tickets, your
chance to win would be 1/N = 1/100, 000. The way it is actually done, you
need to both survive the first drawing to get your ticket into the bag and then
get your ticket drawn from the bag. The probability to get your entry into
the bag is n/N = 1, 000/100, 000. The conditional probability to be drawn
from the bag, given that your entry is in it, is 1/n = 1/1, 000. Multiply to get
1/N = 1/100, 000 once more. There were no riots in the streets. [17, p 22]

Example 6.31. Suppose your professor tells the class that there will be a
surprise quiz next week. On one day, Monday-Friday, you will be told in the
morning that a quiz is to be given on that day. You quickly realize that the
quiz will not be given on Friday; if it was, it would not be a surprise because it
is the last possible day to get the quiz. Thus, Friday is ruled out, which leaves
Monday-Thursday. But then Thursday is impossible also, now having become
the last possible day to get the quiz. Thursday is ruled out, but then Wednesday
becomes impossible, then Tuesday, then Monday, and you conclude: There is
no such thing as a surprise quiz! But the professor decides to give the quiz on
Tuesday, and come Tuesday morning, you are surprised indeed.

This problem, which is often also formulated in terms of surprise fire drills
or surprise executions, is known by many names, for example, the “hangman’s
paradox” or by serious philosophers as the “prediction paradox.” To resolve
it, let’s treat it as a probability problem. Suppose that the day of the quiz
is chosen randomly among the five days of the week. Now start a new school
week. What is the probability that you get the test on Monday? Obviously
1/5 because this is the probability that Monday is chosen. If the test was not
given on Monday. what is the probability that it is given on Tuesday? The
probability that Tuesday is chosen to start with is 1/5, but we are now asking
for the conditional probability that the test is given on Tuesday, given that it
was not given on Monday. As there are now four days left, this conditional
probability is 1/4. Similarly, the conditional probabilities that the test is given
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on Wednesday, Thursday, and Friday conditioned on that it has not been given
thus far are 1/3, 1/2, and 1, respectively.

We could define the “surprise index” each day as the probability that the
test is not given. On Monday, the surprise index is therefore 0.8, on Tuesday it
has gone down to 0.75, and it continues to go down as the week proceeds with
no test given. On Friday, the surprise index is 0, indicating absolute certainty
that the test will be given that day. Thus, it is possible to give a surprise test
but not in a way so that you are equally surprised each day, and it is never
possible to give it so that you are surprised on Friday. [17, p 23–24]

Example 6.32. Today Bayesian analysis is widely employed throughout sci-
ence and industry. For instance, models employed to determine car insurance
rates include a mathematical function describing, per unit of driving time, your
personal probability of having zero, one, or more accidents. Consider, for our
purposes, a simplified model that places everyone in one of two categories: high
risk, which includes drivers who average at least one accident each year, and
low risk, which includes drivers who average less than one.

If, when you apply for insurance, you have a driving record that stretches
back twenty years without an accident or one that goes back twenty years with
thirty-seven accidents, the insurance company can be pretty sure which category
to place you in. But if you are a new driver, should you be classified as low risk
(a kid who obeys the speed limit and volunteers to be the designated driver)
or high risk (a kid who races down Main Street swigging from a half-empty $2
bottle of Boone’s Farm apple wine)?

Since the company has no data on you, it might assign you an equal prior
probability of being in either group, or it might use what it knows about the
general population of new drivers and start you off by guessing that the chances
you are a high risk are, say, 1 in 3. In that case the company would model you as
a hybrid–one-third high risk and two-thirds low risk–and charge you one-third
the price it charges high-risk drivers plus two-thirds the price it charges low-risk
drivers.

Then, after a year of observation, the company can employ the new datum
to reevaluate its model, adjust the one-third and two-third proportions it pre-
viously assigned, and recalculate what it ought to charge. If you have had no
accidents, the proportion of low risk and low price it assigns you will increase;
if you have had two accidents, it will decrease. The precise size of the adjust-
ment is given by Bayes’s theory. In the same manner the insurance company
can periodically adjust its assessments in later years to reflect the fact that you
were accident-free or that you twice had an accident while driving the wrong
way down a one-way street, holding a cell phone with your left hand and a
doughnut with your right. That is why insurance companies can give out “good
driver” discounts: the absence of accidents elevates the posterior probability
that a driver belongs in a low-risk group. [14, p 111-112]
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